432 lines
		
	
	
	
		
			14 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			432 lines
		
	
	
	
		
			14 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/* sha256.c - Functions to compute SHA256 and SHA224 message digest of files or
 | 
						|
   memory blocks according to the NIST specification FIPS-180-2.
 | 
						|
 | 
						|
   Copyright (C) 2005-2006, 2008-2023 Free Software Foundation, Inc.
 | 
						|
 | 
						|
   This file is free software: you can redistribute it and/or modify
 | 
						|
   it under the terms of the GNU Lesser General Public License as
 | 
						|
   published by the Free Software Foundation; either version 2.1 of the
 | 
						|
   License, or (at your option) any later version.
 | 
						|
 | 
						|
   This file is distributed in the hope that it will be useful,
 | 
						|
   but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
						|
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
						|
   GNU Lesser General Public License for more details.
 | 
						|
 | 
						|
   You should have received a copy of the GNU Lesser General Public License
 | 
						|
   along with this program.  If not, see <https://www.gnu.org/licenses/>.  */
 | 
						|
 | 
						|
/* Written by David Madore, considerably copypasting from
 | 
						|
   Scott G. Miller's sha1.c
 | 
						|
*/
 | 
						|
 | 
						|
#include <config.h>
 | 
						|
 | 
						|
/* Specification.  */
 | 
						|
#if HAVE_OPENSSL_SHA256
 | 
						|
# define GL_OPENSSL_INLINE _GL_EXTERN_INLINE
 | 
						|
#endif
 | 
						|
#include "sha256.h"
 | 
						|
 | 
						|
#include <stdint.h>
 | 
						|
#include <string.h>
 | 
						|
 | 
						|
#include <byteswap.h>
 | 
						|
#ifdef WORDS_BIGENDIAN
 | 
						|
# define SWAP(n) (n)
 | 
						|
#else
 | 
						|
# define SWAP(n) bswap_32 (n)
 | 
						|
#endif
 | 
						|
 | 
						|
#if ! HAVE_OPENSSL_SHA256
 | 
						|
 | 
						|
/* This array contains the bytes used to pad the buffer to the next
 | 
						|
   64-byte boundary.  */
 | 
						|
static const unsigned char fillbuf[64] = { 0x80, 0 /* , 0, 0, ...  */ };
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
  Takes a pointer to a 256 bit block of data (eight 32 bit ints) and
 | 
						|
  initializes it to the start constants of the SHA256 algorithm.  This
 | 
						|
  must be called before using hash in the call to sha256_hash
 | 
						|
*/
 | 
						|
void
 | 
						|
sha256_init_ctx (struct sha256_ctx *ctx)
 | 
						|
{
 | 
						|
  ctx->state[0] = 0x6a09e667UL;
 | 
						|
  ctx->state[1] = 0xbb67ae85UL;
 | 
						|
  ctx->state[2] = 0x3c6ef372UL;
 | 
						|
  ctx->state[3] = 0xa54ff53aUL;
 | 
						|
  ctx->state[4] = 0x510e527fUL;
 | 
						|
  ctx->state[5] = 0x9b05688cUL;
 | 
						|
  ctx->state[6] = 0x1f83d9abUL;
 | 
						|
  ctx->state[7] = 0x5be0cd19UL;
 | 
						|
 | 
						|
  ctx->total[0] = ctx->total[1] = 0;
 | 
						|
  ctx->buflen = 0;
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
sha224_init_ctx (struct sha256_ctx *ctx)
 | 
						|
{
 | 
						|
  ctx->state[0] = 0xc1059ed8UL;
 | 
						|
  ctx->state[1] = 0x367cd507UL;
 | 
						|
  ctx->state[2] = 0x3070dd17UL;
 | 
						|
  ctx->state[3] = 0xf70e5939UL;
 | 
						|
  ctx->state[4] = 0xffc00b31UL;
 | 
						|
  ctx->state[5] = 0x68581511UL;
 | 
						|
  ctx->state[6] = 0x64f98fa7UL;
 | 
						|
  ctx->state[7] = 0xbefa4fa4UL;
 | 
						|
 | 
						|
  ctx->total[0] = ctx->total[1] = 0;
 | 
						|
  ctx->buflen = 0;
 | 
						|
}
 | 
						|
 | 
						|
/* Copy the value from v into the memory location pointed to by *CP,
 | 
						|
   If your architecture allows unaligned access, this is equivalent to
 | 
						|
   * (__typeof__ (v) *) cp = v  */
 | 
						|
static void
 | 
						|
set_uint32 (char *cp, uint32_t v)
 | 
						|
{
 | 
						|
  memcpy (cp, &v, sizeof v);
 | 
						|
}
 | 
						|
 | 
						|
/* Put result from CTX in first 32 bytes following RESBUF.
 | 
						|
   The result must be in little endian byte order.  */
 | 
						|
void *
 | 
						|
sha256_read_ctx (const struct sha256_ctx *ctx, void *resbuf)
 | 
						|
{
 | 
						|
  int i;
 | 
						|
  char *r = resbuf;
 | 
						|
 | 
						|
  for (i = 0; i < 8; i++)
 | 
						|
    set_uint32 (r + i * sizeof ctx->state[0], SWAP (ctx->state[i]));
 | 
						|
 | 
						|
  return resbuf;
 | 
						|
}
 | 
						|
 | 
						|
void *
 | 
						|
sha224_read_ctx (const struct sha256_ctx *ctx, void *resbuf)
 | 
						|
{
 | 
						|
  int i;
 | 
						|
  char *r = resbuf;
 | 
						|
 | 
						|
  for (i = 0; i < 7; i++)
 | 
						|
    set_uint32 (r + i * sizeof ctx->state[0], SWAP (ctx->state[i]));
 | 
						|
 | 
						|
  return resbuf;
 | 
						|
}
 | 
						|
 | 
						|
/* Process the remaining bytes in the internal buffer and the usual
 | 
						|
   prolog according to the standard and write the result to RESBUF.  */
 | 
						|
static void
 | 
						|
sha256_conclude_ctx (struct sha256_ctx *ctx)
 | 
						|
{
 | 
						|
  /* Take yet unprocessed bytes into account.  */
 | 
						|
  size_t bytes = ctx->buflen;
 | 
						|
  size_t size = (bytes < 56) ? 64 / 4 : 64 * 2 / 4;
 | 
						|
 | 
						|
  /* Now count remaining bytes.  */
 | 
						|
  ctx->total[0] += bytes;
 | 
						|
  if (ctx->total[0] < bytes)
 | 
						|
    ++ctx->total[1];
 | 
						|
 | 
						|
  /* Put the 64-bit file length in *bits* at the end of the buffer.
 | 
						|
     Use set_uint32 rather than a simple assignment, to avoid risk of
 | 
						|
     unaligned access.  */
 | 
						|
  set_uint32 ((char *) &ctx->buffer[size - 2],
 | 
						|
              SWAP ((ctx->total[1] << 3) | (ctx->total[0] >> 29)));
 | 
						|
  set_uint32 ((char *) &ctx->buffer[size - 1],
 | 
						|
              SWAP (ctx->total[0] << 3));
 | 
						|
 | 
						|
  memcpy (&((char *) ctx->buffer)[bytes], fillbuf, (size - 2) * 4 - bytes);
 | 
						|
 | 
						|
  /* Process last bytes.  */
 | 
						|
  sha256_process_block (ctx->buffer, size * 4, ctx);
 | 
						|
}
 | 
						|
 | 
						|
void *
 | 
						|
sha256_finish_ctx (struct sha256_ctx *ctx, void *resbuf)
 | 
						|
{
 | 
						|
  sha256_conclude_ctx (ctx);
 | 
						|
  return sha256_read_ctx (ctx, resbuf);
 | 
						|
}
 | 
						|
 | 
						|
void *
 | 
						|
sha224_finish_ctx (struct sha256_ctx *ctx, void *resbuf)
 | 
						|
{
 | 
						|
  sha256_conclude_ctx (ctx);
 | 
						|
  return sha224_read_ctx (ctx, resbuf);
 | 
						|
}
 | 
						|
 | 
						|
/* Compute SHA256 message digest for LEN bytes beginning at BUFFER.  The
 | 
						|
   result is always in little endian byte order, so that a byte-wise
 | 
						|
   output yields to the wanted ASCII representation of the message
 | 
						|
   digest.  */
 | 
						|
void *
 | 
						|
sha256_buffer (const char *buffer, size_t len, void *resblock)
 | 
						|
{
 | 
						|
  struct sha256_ctx ctx;
 | 
						|
 | 
						|
  /* Initialize the computation context.  */
 | 
						|
  sha256_init_ctx (&ctx);
 | 
						|
 | 
						|
  /* Process whole buffer but last len % 64 bytes.  */
 | 
						|
  sha256_process_bytes (buffer, len, &ctx);
 | 
						|
 | 
						|
  /* Put result in desired memory area.  */
 | 
						|
  return sha256_finish_ctx (&ctx, resblock);
 | 
						|
}
 | 
						|
 | 
						|
void *
 | 
						|
sha224_buffer (const char *buffer, size_t len, void *resblock)
 | 
						|
{
 | 
						|
  struct sha256_ctx ctx;
 | 
						|
 | 
						|
  /* Initialize the computation context.  */
 | 
						|
  sha224_init_ctx (&ctx);
 | 
						|
 | 
						|
  /* Process whole buffer but last len % 64 bytes.  */
 | 
						|
  sha256_process_bytes (buffer, len, &ctx);
 | 
						|
 | 
						|
  /* Put result in desired memory area.  */
 | 
						|
  return sha224_finish_ctx (&ctx, resblock);
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
sha256_process_bytes (const void *buffer, size_t len, struct sha256_ctx *ctx)
 | 
						|
{
 | 
						|
  /* When we already have some bits in our internal buffer concatenate
 | 
						|
     both inputs first.  */
 | 
						|
  if (ctx->buflen != 0)
 | 
						|
    {
 | 
						|
      size_t left_over = ctx->buflen;
 | 
						|
      size_t add = 128 - left_over > len ? len : 128 - left_over;
 | 
						|
 | 
						|
      memcpy (&((char *) ctx->buffer)[left_over], buffer, add);
 | 
						|
      ctx->buflen += add;
 | 
						|
 | 
						|
      if (ctx->buflen > 64)
 | 
						|
        {
 | 
						|
          sha256_process_block (ctx->buffer, ctx->buflen & ~63, ctx);
 | 
						|
 | 
						|
          ctx->buflen &= 63;
 | 
						|
          /* The regions in the following copy operation cannot overlap,
 | 
						|
             because ctx->buflen < 64 ≤ (left_over + add) & ~63.  */
 | 
						|
          memcpy (ctx->buffer,
 | 
						|
                  &((char *) ctx->buffer)[(left_over + add) & ~63],
 | 
						|
                  ctx->buflen);
 | 
						|
        }
 | 
						|
 | 
						|
      buffer = (const char *) buffer + add;
 | 
						|
      len -= add;
 | 
						|
    }
 | 
						|
 | 
						|
  /* Process available complete blocks.  */
 | 
						|
  if (len >= 64)
 | 
						|
    {
 | 
						|
#if !(_STRING_ARCH_unaligned || _STRING_INLINE_unaligned)
 | 
						|
# define UNALIGNED_P(p) ((uintptr_t) (p) % alignof (uint32_t) != 0)
 | 
						|
      if (UNALIGNED_P (buffer))
 | 
						|
        while (len > 64)
 | 
						|
          {
 | 
						|
            sha256_process_block (memcpy (ctx->buffer, buffer, 64), 64, ctx);
 | 
						|
            buffer = (const char *) buffer + 64;
 | 
						|
            len -= 64;
 | 
						|
          }
 | 
						|
      else
 | 
						|
#endif
 | 
						|
        {
 | 
						|
          sha256_process_block (buffer, len & ~63, ctx);
 | 
						|
          buffer = (const char *) buffer + (len & ~63);
 | 
						|
          len &= 63;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
  /* Move remaining bytes in internal buffer.  */
 | 
						|
  if (len > 0)
 | 
						|
    {
 | 
						|
      size_t left_over = ctx->buflen;
 | 
						|
 | 
						|
      memcpy (&((char *) ctx->buffer)[left_over], buffer, len);
 | 
						|
      left_over += len;
 | 
						|
      if (left_over >= 64)
 | 
						|
        {
 | 
						|
          sha256_process_block (ctx->buffer, 64, ctx);
 | 
						|
          left_over -= 64;
 | 
						|
          /* The regions in the following copy operation cannot overlap,
 | 
						|
             because left_over ≤ 64.  */
 | 
						|
          memcpy (ctx->buffer, &ctx->buffer[16], left_over);
 | 
						|
        }
 | 
						|
      ctx->buflen = left_over;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/* --- Code below is the primary difference between sha1.c and sha256.c --- */
 | 
						|
 | 
						|
/* SHA256 round constants */
 | 
						|
#define K(I) sha256_round_constants[I]
 | 
						|
static const uint32_t sha256_round_constants[64] = {
 | 
						|
  0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL,
 | 
						|
  0x3956c25bUL, 0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL,
 | 
						|
  0xd807aa98UL, 0x12835b01UL, 0x243185beUL, 0x550c7dc3UL,
 | 
						|
  0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL, 0xc19bf174UL,
 | 
						|
  0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL,
 | 
						|
  0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL,
 | 
						|
  0x983e5152UL, 0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL,
 | 
						|
  0xc6e00bf3UL, 0xd5a79147UL, 0x06ca6351UL, 0x14292967UL,
 | 
						|
  0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL, 0x53380d13UL,
 | 
						|
  0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL,
 | 
						|
  0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL,
 | 
						|
  0xd192e819UL, 0xd6990624UL, 0xf40e3585UL, 0x106aa070UL,
 | 
						|
  0x19a4c116UL, 0x1e376c08UL, 0x2748774cUL, 0x34b0bcb5UL,
 | 
						|
  0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL, 0x682e6ff3UL,
 | 
						|
  0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL,
 | 
						|
  0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL,
 | 
						|
};
 | 
						|
 | 
						|
/* Round functions.  */
 | 
						|
#define F2(A,B,C) ( ( A & B ) | ( C & ( A | B ) ) )
 | 
						|
#define F1(E,F,G) ( G ^ ( E & ( F ^ G ) ) )
 | 
						|
 | 
						|
/* Process LEN bytes of BUFFER, accumulating context into CTX.
 | 
						|
   It is assumed that LEN % 64 == 0.
 | 
						|
   Most of this code comes from GnuPG's cipher/sha1.c.  */
 | 
						|
 | 
						|
void
 | 
						|
sha256_process_block (const void *buffer, size_t len, struct sha256_ctx *ctx)
 | 
						|
{
 | 
						|
  const uint32_t *words = buffer;
 | 
						|
  size_t nwords = len / sizeof (uint32_t);
 | 
						|
  const uint32_t *endp = words + nwords;
 | 
						|
  uint32_t x[16];
 | 
						|
  uint32_t a = ctx->state[0];
 | 
						|
  uint32_t b = ctx->state[1];
 | 
						|
  uint32_t c = ctx->state[2];
 | 
						|
  uint32_t d = ctx->state[3];
 | 
						|
  uint32_t e = ctx->state[4];
 | 
						|
  uint32_t f = ctx->state[5];
 | 
						|
  uint32_t g = ctx->state[6];
 | 
						|
  uint32_t h = ctx->state[7];
 | 
						|
  uint32_t lolen = len;
 | 
						|
 | 
						|
  /* First increment the byte count.  FIPS PUB 180-2 specifies the possible
 | 
						|
     length of the file up to 2^64 bits.  Here we only compute the
 | 
						|
     number of bytes.  Do a double word increment.  */
 | 
						|
  ctx->total[0] += lolen;
 | 
						|
  ctx->total[1] += (len >> 31 >> 1) + (ctx->total[0] < lolen);
 | 
						|
 | 
						|
#define rol(x, n) (((x) << (n)) | ((x) >> (32 - (n))))
 | 
						|
#define S0(x) (rol(x,25)^rol(x,14)^(x>>3))
 | 
						|
#define S1(x) (rol(x,15)^rol(x,13)^(x>>10))
 | 
						|
#define SS0(x) (rol(x,30)^rol(x,19)^rol(x,10))
 | 
						|
#define SS1(x) (rol(x,26)^rol(x,21)^rol(x,7))
 | 
						|
 | 
						|
#define M(I) ( tm =   S1(x[(I-2)&0x0f]) + x[(I-7)&0x0f] \
 | 
						|
                    + S0(x[(I-15)&0x0f]) + x[I&0x0f]    \
 | 
						|
               , x[I&0x0f] = tm )
 | 
						|
 | 
						|
#define R(A,B,C,D,E,F,G,H,K,M)  do { t0 = SS0(A) + F2(A,B,C); \
 | 
						|
                                     t1 = H + SS1(E)  \
 | 
						|
                                      + F1(E,F,G)     \
 | 
						|
                                      + K             \
 | 
						|
                                      + M;            \
 | 
						|
                                     D += t1;  H = t0 + t1; \
 | 
						|
                               } while(0)
 | 
						|
 | 
						|
  while (words < endp)
 | 
						|
    {
 | 
						|
      uint32_t tm;
 | 
						|
      uint32_t t0, t1;
 | 
						|
      int t;
 | 
						|
      /* FIXME: see sha1.c for a better implementation.  */
 | 
						|
      for (t = 0; t < 16; t++)
 | 
						|
        {
 | 
						|
          x[t] = SWAP (*words);
 | 
						|
          words++;
 | 
						|
        }
 | 
						|
 | 
						|
      R( a, b, c, d, e, f, g, h, K( 0), x[ 0] );
 | 
						|
      R( h, a, b, c, d, e, f, g, K( 1), x[ 1] );
 | 
						|
      R( g, h, a, b, c, d, e, f, K( 2), x[ 2] );
 | 
						|
      R( f, g, h, a, b, c, d, e, K( 3), x[ 3] );
 | 
						|
      R( e, f, g, h, a, b, c, d, K( 4), x[ 4] );
 | 
						|
      R( d, e, f, g, h, a, b, c, K( 5), x[ 5] );
 | 
						|
      R( c, d, e, f, g, h, a, b, K( 6), x[ 6] );
 | 
						|
      R( b, c, d, e, f, g, h, a, K( 7), x[ 7] );
 | 
						|
      R( a, b, c, d, e, f, g, h, K( 8), x[ 8] );
 | 
						|
      R( h, a, b, c, d, e, f, g, K( 9), x[ 9] );
 | 
						|
      R( g, h, a, b, c, d, e, f, K(10), x[10] );
 | 
						|
      R( f, g, h, a, b, c, d, e, K(11), x[11] );
 | 
						|
      R( e, f, g, h, a, b, c, d, K(12), x[12] );
 | 
						|
      R( d, e, f, g, h, a, b, c, K(13), x[13] );
 | 
						|
      R( c, d, e, f, g, h, a, b, K(14), x[14] );
 | 
						|
      R( b, c, d, e, f, g, h, a, K(15), x[15] );
 | 
						|
      R( a, b, c, d, e, f, g, h, K(16), M(16) );
 | 
						|
      R( h, a, b, c, d, e, f, g, K(17), M(17) );
 | 
						|
      R( g, h, a, b, c, d, e, f, K(18), M(18) );
 | 
						|
      R( f, g, h, a, b, c, d, e, K(19), M(19) );
 | 
						|
      R( e, f, g, h, a, b, c, d, K(20), M(20) );
 | 
						|
      R( d, e, f, g, h, a, b, c, K(21), M(21) );
 | 
						|
      R( c, d, e, f, g, h, a, b, K(22), M(22) );
 | 
						|
      R( b, c, d, e, f, g, h, a, K(23), M(23) );
 | 
						|
      R( a, b, c, d, e, f, g, h, K(24), M(24) );
 | 
						|
      R( h, a, b, c, d, e, f, g, K(25), M(25) );
 | 
						|
      R( g, h, a, b, c, d, e, f, K(26), M(26) );
 | 
						|
      R( f, g, h, a, b, c, d, e, K(27), M(27) );
 | 
						|
      R( e, f, g, h, a, b, c, d, K(28), M(28) );
 | 
						|
      R( d, e, f, g, h, a, b, c, K(29), M(29) );
 | 
						|
      R( c, d, e, f, g, h, a, b, K(30), M(30) );
 | 
						|
      R( b, c, d, e, f, g, h, a, K(31), M(31) );
 | 
						|
      R( a, b, c, d, e, f, g, h, K(32), M(32) );
 | 
						|
      R( h, a, b, c, d, e, f, g, K(33), M(33) );
 | 
						|
      R( g, h, a, b, c, d, e, f, K(34), M(34) );
 | 
						|
      R( f, g, h, a, b, c, d, e, K(35), M(35) );
 | 
						|
      R( e, f, g, h, a, b, c, d, K(36), M(36) );
 | 
						|
      R( d, e, f, g, h, a, b, c, K(37), M(37) );
 | 
						|
      R( c, d, e, f, g, h, a, b, K(38), M(38) );
 | 
						|
      R( b, c, d, e, f, g, h, a, K(39), M(39) );
 | 
						|
      R( a, b, c, d, e, f, g, h, K(40), M(40) );
 | 
						|
      R( h, a, b, c, d, e, f, g, K(41), M(41) );
 | 
						|
      R( g, h, a, b, c, d, e, f, K(42), M(42) );
 | 
						|
      R( f, g, h, a, b, c, d, e, K(43), M(43) );
 | 
						|
      R( e, f, g, h, a, b, c, d, K(44), M(44) );
 | 
						|
      R( d, e, f, g, h, a, b, c, K(45), M(45) );
 | 
						|
      R( c, d, e, f, g, h, a, b, K(46), M(46) );
 | 
						|
      R( b, c, d, e, f, g, h, a, K(47), M(47) );
 | 
						|
      R( a, b, c, d, e, f, g, h, K(48), M(48) );
 | 
						|
      R( h, a, b, c, d, e, f, g, K(49), M(49) );
 | 
						|
      R( g, h, a, b, c, d, e, f, K(50), M(50) );
 | 
						|
      R( f, g, h, a, b, c, d, e, K(51), M(51) );
 | 
						|
      R( e, f, g, h, a, b, c, d, K(52), M(52) );
 | 
						|
      R( d, e, f, g, h, a, b, c, K(53), M(53) );
 | 
						|
      R( c, d, e, f, g, h, a, b, K(54), M(54) );
 | 
						|
      R( b, c, d, e, f, g, h, a, K(55), M(55) );
 | 
						|
      R( a, b, c, d, e, f, g, h, K(56), M(56) );
 | 
						|
      R( h, a, b, c, d, e, f, g, K(57), M(57) );
 | 
						|
      R( g, h, a, b, c, d, e, f, K(58), M(58) );
 | 
						|
      R( f, g, h, a, b, c, d, e, K(59), M(59) );
 | 
						|
      R( e, f, g, h, a, b, c, d, K(60), M(60) );
 | 
						|
      R( d, e, f, g, h, a, b, c, K(61), M(61) );
 | 
						|
      R( c, d, e, f, g, h, a, b, K(62), M(62) );
 | 
						|
      R( b, c, d, e, f, g, h, a, K(63), M(63) );
 | 
						|
 | 
						|
      a = ctx->state[0] += a;
 | 
						|
      b = ctx->state[1] += b;
 | 
						|
      c = ctx->state[2] += c;
 | 
						|
      d = ctx->state[3] += d;
 | 
						|
      e = ctx->state[4] += e;
 | 
						|
      f = ctx->state[5] += f;
 | 
						|
      g = ctx->state[6] += g;
 | 
						|
      h = ctx->state[7] += h;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
#endif
 | 
						|
 | 
						|
/*
 | 
						|
 * Hey Emacs!
 | 
						|
 * Local Variables:
 | 
						|
 * coding: utf-8
 | 
						|
 * End:
 | 
						|
 */
 |