890 lines
30 KiB
C
890 lines
30 KiB
C
/*****************************************************************************
|
|
*
|
|
* Nagios check_ntp plugin
|
|
*
|
|
* License: GPL
|
|
* Copyright (c) 2006 Sean Finney <seanius@seanius.net>
|
|
* Copyright (c) 2006-2008 Nagios Plugins Development Team
|
|
*
|
|
* Description:
|
|
*
|
|
* This file contains the check_ntp plugin
|
|
*
|
|
* This plugin to check ntp servers independant of any commandline
|
|
* programs or external libraries.
|
|
*
|
|
*
|
|
* This program is free software: you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation, either version 3 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*
|
|
*
|
|
*****************************************************************************/
|
|
|
|
const char *progname = "check_ntp";
|
|
const char *copyright = "2006-2008";
|
|
const char *email = "nagiosplug-devel@lists.sourceforge.net";
|
|
|
|
#include "common.h"
|
|
#include "netutils.h"
|
|
#include "utils.h"
|
|
|
|
static char *server_address=NULL;
|
|
static int verbose=0;
|
|
static short do_offset=0;
|
|
static char *owarn="60";
|
|
static char *ocrit="120";
|
|
static short do_jitter=0;
|
|
static char *jwarn="5000";
|
|
static char *jcrit="10000";
|
|
|
|
int process_arguments (int, char **);
|
|
thresholds *offset_thresholds = NULL;
|
|
thresholds *jitter_thresholds = NULL;
|
|
void print_help (void);
|
|
void print_usage (void);
|
|
|
|
/* number of times to perform each request to get a good average. */
|
|
#define AVG_NUM 4
|
|
|
|
/* max size of control message data */
|
|
#define MAX_CM_SIZE 468
|
|
|
|
/* this structure holds everything in an ntp request/response as per rfc1305 */
|
|
typedef struct {
|
|
uint8_t flags; /* byte with leapindicator,vers,mode. see macros */
|
|
uint8_t stratum; /* clock stratum */
|
|
int8_t poll; /* polling interval */
|
|
int8_t precision; /* precision of the local clock */
|
|
int32_t rtdelay; /* total rt delay, as a fixed point num. see macros */
|
|
uint32_t rtdisp; /* like above, but for max err to primary src */
|
|
uint32_t refid; /* ref clock identifier */
|
|
uint64_t refts; /* reference timestamp. local time local clock */
|
|
uint64_t origts; /* time at which request departed client */
|
|
uint64_t rxts; /* time at which request arrived at server */
|
|
uint64_t txts; /* time at which request departed server */
|
|
} ntp_message;
|
|
|
|
/* this structure holds data about results from querying offset from a peer */
|
|
typedef struct {
|
|
time_t waiting; /* ts set when we started waiting for a response */
|
|
int num_responses; /* number of successfully recieved responses */
|
|
uint8_t stratum; /* copied verbatim from the ntp_message */
|
|
double rtdelay; /* converted from the ntp_message */
|
|
double rtdisp; /* converted from the ntp_message */
|
|
double offset[AVG_NUM]; /* offsets from each response */
|
|
uint8_t flags; /* byte with leapindicator,vers,mode. see macros */
|
|
} ntp_server_results;
|
|
|
|
/* this structure holds everything in an ntp control message as per rfc1305 */
|
|
typedef struct {
|
|
uint8_t flags; /* byte with leapindicator,vers,mode. see macros */
|
|
uint8_t op; /* R,E,M bits and Opcode */
|
|
uint16_t seq; /* Packet sequence */
|
|
uint16_t status; /* Clock status */
|
|
uint16_t assoc; /* Association */
|
|
uint16_t offset; /* Similar to TCP sequence # */
|
|
uint16_t count; /* # bytes of data */
|
|
char data[MAX_CM_SIZE]; /* ASCII data of the request */
|
|
/* NB: not necessarily NULL terminated! */
|
|
} ntp_control_message;
|
|
|
|
/* this is an association/status-word pair found in control packet reponses */
|
|
typedef struct {
|
|
uint16_t assoc;
|
|
uint16_t status;
|
|
} ntp_assoc_status_pair;
|
|
|
|
/* bits 1,2 are the leap indicator */
|
|
#define LI_MASK 0xc0
|
|
#define LI(x) ((x&LI_MASK)>>6)
|
|
#define LI_SET(x,y) do{ x |= ((y<<6)&LI_MASK); }while(0)
|
|
/* and these are the values of the leap indicator */
|
|
#define LI_NOWARNING 0x00
|
|
#define LI_EXTRASEC 0x01
|
|
#define LI_MISSINGSEC 0x02
|
|
#define LI_ALARM 0x03
|
|
/* bits 3,4,5 are the ntp version */
|
|
#define VN_MASK 0x38
|
|
#define VN(x) ((x&VN_MASK)>>3)
|
|
#define VN_SET(x,y) do{ x |= ((y<<3)&VN_MASK); }while(0)
|
|
#define VN_RESERVED 0x02
|
|
/* bits 6,7,8 are the ntp mode */
|
|
#define MODE_MASK 0x07
|
|
#define MODE(x) (x&MODE_MASK)
|
|
#define MODE_SET(x,y) do{ x |= (y&MODE_MASK); }while(0)
|
|
/* here are some values */
|
|
#define MODE_CLIENT 0x03
|
|
#define MODE_CONTROLMSG 0x06
|
|
/* In control message, bits 8-10 are R,E,M bits */
|
|
#define REM_MASK 0xe0
|
|
#define REM_RESP 0x80
|
|
#define REM_ERROR 0x40
|
|
#define REM_MORE 0x20
|
|
/* In control message, bits 11 - 15 are opcode */
|
|
#define OP_MASK 0x1f
|
|
#define OP_SET(x,y) do{ x |= (y&OP_MASK); }while(0)
|
|
#define OP_READSTAT 0x01
|
|
#define OP_READVAR 0x02
|
|
/* In peer status bytes, bits 6,7,8 determine clock selection status */
|
|
#define PEER_SEL(x) ((ntohs(x)>>8)&0x07)
|
|
#define PEER_INCLUDED 0x04
|
|
#define PEER_SYNCSOURCE 0x06
|
|
|
|
/**
|
|
** a note about the 32-bit "fixed point" numbers:
|
|
**
|
|
they are divided into halves, each being a 16-bit int in network byte order:
|
|
- the first 16 bits are an int on the left side of a decimal point.
|
|
- the second 16 bits represent a fraction n/(2^16)
|
|
likewise for the 64-bit "fixed point" numbers with everything doubled :)
|
|
**/
|
|
|
|
/* macros to access the left/right 16 bits of a 32-bit ntp "fixed point"
|
|
number. note that these can be used as lvalues too */
|
|
#define L16(x) (((uint16_t*)&x)[0])
|
|
#define R16(x) (((uint16_t*)&x)[1])
|
|
/* macros to access the left/right 32 bits of a 64-bit ntp "fixed point"
|
|
number. these too can be used as lvalues */
|
|
#define L32(x) (((uint32_t*)&x)[0])
|
|
#define R32(x) (((uint32_t*)&x)[1])
|
|
|
|
/* ntp wants seconds since 1/1/00, epoch is 1/1/70. this is the difference */
|
|
#define EPOCHDIFF 0x83aa7e80UL
|
|
|
|
/* extract a 32-bit ntp fixed point number into a double */
|
|
#define NTP32asDOUBLE(x) (ntohs(L16(x)) + (double)ntohs(R16(x))/65536.0)
|
|
|
|
/* likewise for a 64-bit ntp fp number */
|
|
#define NTP64asDOUBLE(n) (double)(((uint64_t)n)?\
|
|
(ntohl(L32(n))-EPOCHDIFF) + \
|
|
(.00000001*(0.5+(double)(ntohl(R32(n))/42.94967296))):\
|
|
0)
|
|
|
|
/* convert a struct timeval to a double */
|
|
#define TVasDOUBLE(x) (double)(x.tv_sec+(0.000001*x.tv_usec))
|
|
|
|
/* convert an ntp 64-bit fp number to a struct timeval */
|
|
#define NTP64toTV(n,t) \
|
|
do{ if(!n) t.tv_sec = t.tv_usec = 0; \
|
|
else { \
|
|
t.tv_sec=ntohl(L32(n))-EPOCHDIFF; \
|
|
t.tv_usec=(int)(0.5+(double)(ntohl(R32(n))/4294.967296)); \
|
|
} \
|
|
}while(0)
|
|
|
|
/* convert a struct timeval to an ntp 64-bit fp number */
|
|
#define TVtoNTP64(t,n) \
|
|
do{ if(!t.tv_usec && !t.tv_sec) n=0x0UL; \
|
|
else { \
|
|
L32(n)=htonl(t.tv_sec + EPOCHDIFF); \
|
|
R32(n)=htonl((uint64_t)((4294.967296*t.tv_usec)+.5)); \
|
|
} \
|
|
} while(0)
|
|
|
|
/* NTP control message header is 12 bytes, plus any data in the data
|
|
* field, plus null padding to the nearest 32-bit boundary per rfc.
|
|
*/
|
|
#define SIZEOF_NTPCM(m) (12+ntohs(m.count)+((ntohs(m.count)%4)?4-(ntohs(m.count)%4):0))
|
|
|
|
/* finally, a little helper or two for debugging: */
|
|
#define DBG(x) do{if(verbose>1){ x; }}while(0);
|
|
#define PRINTSOCKADDR(x) \
|
|
do{ \
|
|
printf("%u.%u.%u.%u", (x>>24)&0xff, (x>>16)&0xff, (x>>8)&0xff, x&0xff);\
|
|
}while(0);
|
|
|
|
/* calculate the offset of the local clock */
|
|
static inline double calc_offset(const ntp_message *m, const struct timeval *t){
|
|
double client_tx, peer_rx, peer_tx, client_rx;
|
|
client_tx = NTP64asDOUBLE(m->origts);
|
|
peer_rx = NTP64asDOUBLE(m->rxts);
|
|
peer_tx = NTP64asDOUBLE(m->txts);
|
|
client_rx=TVasDOUBLE((*t));
|
|
return (.5*((peer_tx-client_rx)+(peer_rx-client_tx)));
|
|
}
|
|
|
|
/* print out a ntp packet in human readable/debuggable format */
|
|
void print_ntp_message(const ntp_message *p){
|
|
struct timeval ref, orig, rx, tx;
|
|
|
|
NTP64toTV(p->refts,ref);
|
|
NTP64toTV(p->origts,orig);
|
|
NTP64toTV(p->rxts,rx);
|
|
NTP64toTV(p->txts,tx);
|
|
|
|
printf("packet contents:\n");
|
|
printf("\tflags: 0x%.2x\n", p->flags);
|
|
printf("\t li=%d (0x%.2x)\n", LI(p->flags), p->flags&LI_MASK);
|
|
printf("\t vn=%d (0x%.2x)\n", VN(p->flags), p->flags&VN_MASK);
|
|
printf("\t mode=%d (0x%.2x)\n", MODE(p->flags), p->flags&MODE_MASK);
|
|
printf("\tstratum = %d\n", p->stratum);
|
|
printf("\tpoll = %g\n", pow(2, p->poll));
|
|
printf("\tprecision = %g\n", pow(2, p->precision));
|
|
printf("\trtdelay = %-.16g\n", NTP32asDOUBLE(p->rtdelay));
|
|
printf("\trtdisp = %-.16g\n", NTP32asDOUBLE(p->rtdisp));
|
|
printf("\trefid = %x\n", p->refid);
|
|
printf("\trefts = %-.16g\n", NTP64asDOUBLE(p->refts));
|
|
printf("\torigts = %-.16g\n", NTP64asDOUBLE(p->origts));
|
|
printf("\trxts = %-.16g\n", NTP64asDOUBLE(p->rxts));
|
|
printf("\ttxts = %-.16g\n", NTP64asDOUBLE(p->txts));
|
|
}
|
|
|
|
void print_ntp_control_message(const ntp_control_message *p){
|
|
int i=0, numpeers=0;
|
|
const ntp_assoc_status_pair *peer=NULL;
|
|
|
|
printf("control packet contents:\n");
|
|
printf("\tflags: 0x%.2x , 0x%.2x\n", p->flags, p->op);
|
|
printf("\t li=%d (0x%.2x)\n", LI(p->flags), p->flags&LI_MASK);
|
|
printf("\t vn=%d (0x%.2x)\n", VN(p->flags), p->flags&VN_MASK);
|
|
printf("\t mode=%d (0x%.2x)\n", MODE(p->flags), p->flags&MODE_MASK);
|
|
printf("\t response=%d (0x%.2x)\n", (p->op&REM_RESP)>0, p->op&REM_RESP);
|
|
printf("\t more=%d (0x%.2x)\n", (p->op&REM_MORE)>0, p->op&REM_MORE);
|
|
printf("\t error=%d (0x%.2x)\n", (p->op&REM_ERROR)>0, p->op&REM_ERROR);
|
|
printf("\t op=%d (0x%.2x)\n", p->op&OP_MASK, p->op&OP_MASK);
|
|
printf("\tsequence: %d (0x%.2x)\n", ntohs(p->seq), ntohs(p->seq));
|
|
printf("\tstatus: %d (0x%.2x)\n", ntohs(p->status), ntohs(p->status));
|
|
printf("\tassoc: %d (0x%.2x)\n", ntohs(p->assoc), ntohs(p->assoc));
|
|
printf("\toffset: %d (0x%.2x)\n", ntohs(p->offset), ntohs(p->offset));
|
|
printf("\tcount: %d (0x%.2x)\n", ntohs(p->count), ntohs(p->count));
|
|
numpeers=ntohs(p->count)/(sizeof(ntp_assoc_status_pair));
|
|
if(p->op&REM_RESP && p->op&OP_READSTAT){
|
|
peer=(ntp_assoc_status_pair*)p->data;
|
|
for(i=0;i<numpeers;i++){
|
|
printf("\tpeer id %.2x status %.2x",
|
|
ntohs(peer[i].assoc), ntohs(peer[i].status));
|
|
if (PEER_SEL(peer[i].status) >= PEER_INCLUDED){
|
|
if(PEER_SEL(peer[i].status) >= PEER_SYNCSOURCE){
|
|
printf(" <-- current sync source");
|
|
} else {
|
|
printf(" <-- current sync candidate");
|
|
}
|
|
}
|
|
printf("\n");
|
|
}
|
|
}
|
|
}
|
|
|
|
void setup_request(ntp_message *p){
|
|
struct timeval t;
|
|
|
|
memset(p, 0, sizeof(ntp_message));
|
|
LI_SET(p->flags, LI_ALARM);
|
|
VN_SET(p->flags, 4);
|
|
MODE_SET(p->flags, MODE_CLIENT);
|
|
p->poll=4;
|
|
p->precision=(int8_t)0xfa;
|
|
L16(p->rtdelay)=htons(1);
|
|
L16(p->rtdisp)=htons(1);
|
|
|
|
gettimeofday(&t, NULL);
|
|
TVtoNTP64(t,p->txts);
|
|
}
|
|
|
|
/* select the "best" server from a list of servers, and return its index.
|
|
* this is done by filtering servers based on stratum, dispersion, and
|
|
* finally round-trip delay. */
|
|
int best_offset_server(const ntp_server_results *slist, int nservers){
|
|
int i=0, cserver=0, best_server=-1;
|
|
|
|
/* for each server */
|
|
for(cserver=0; cserver<nservers; cserver++){
|
|
/* We don't want any servers that fails these tests */
|
|
/* Sort out servers that didn't respond or responede with a 0 stratum;
|
|
* stratum 0 is for reference clocks so no NTP server should ever report
|
|
* a stratum 0 */
|
|
if ( slist[cserver].stratum == 0){
|
|
if (verbose) printf("discarding peer %d: stratum=%d\n", cserver, slist[cserver].stratum);
|
|
continue;
|
|
}
|
|
/* Sort out servers with error flags */
|
|
if ( LI(slist[cserver].flags) == LI_ALARM ){
|
|
if (verbose) printf("discarding peer %d: flags=%d\n", cserver, LI(slist[cserver].flags));
|
|
continue;
|
|
}
|
|
|
|
/* If we don't have a server yet, use the first one */
|
|
if (best_server == -1) {
|
|
best_server = cserver;
|
|
DBG(printf("using peer %d as our first candidate\n", best_server));
|
|
continue;
|
|
}
|
|
|
|
/* compare the server to the best one we've seen so far */
|
|
/* does it have an equal or better stratum? */
|
|
DBG(printf("comparing peer %d with peer %d\n", cserver, best_server));
|
|
if(slist[cserver].stratum <= slist[best_server].stratum){
|
|
DBG(printf("stratum for peer %d <= peer %d\n", cserver, best_server));
|
|
/* does it have an equal or better dispersion? */
|
|
if(slist[cserver].rtdisp <= slist[best_server].rtdisp){
|
|
DBG(printf("dispersion for peer %d <= peer %d\n", cserver, best_server));
|
|
/* does it have a better rtdelay? */
|
|
if(slist[cserver].rtdelay < slist[best_server].rtdelay){
|
|
DBG(printf("rtdelay for peer %d < peer %d\n", cserver, best_server));
|
|
best_server = cserver;
|
|
DBG(printf("peer %d is now our best candidate\n", best_server));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if(best_server >= 0) {
|
|
DBG(printf("best server selected: peer %d\n", best_server));
|
|
return best_server;
|
|
} else {
|
|
DBG(printf("no peers meeting synchronization criteria :(\n"));
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
/* do everything we need to get the total average offset
|
|
* - we use a certain amount of parallelization with poll() to ensure
|
|
* we don't waste time sitting around waiting for single packets.
|
|
* - we also "manually" handle resolving host names and connecting, because
|
|
* we have to do it in a way that our lazy macros don't handle currently :( */
|
|
double offset_request(const char *host, int *status){
|
|
int i=0, j=0, ga_result=0, num_hosts=0, *socklist=NULL, respnum=0;
|
|
int servers_completed=0, one_written=0, one_read=0, servers_readable=0, best_index=-1;
|
|
time_t now_time=0, start_ts=0;
|
|
ntp_message *req=NULL;
|
|
double avg_offset=0.;
|
|
struct timeval recv_time;
|
|
struct addrinfo *ai=NULL, *ai_tmp=NULL, hints;
|
|
struct pollfd *ufds=NULL;
|
|
ntp_server_results *servers=NULL;
|
|
|
|
/* setup hints to only return results from getaddrinfo that we'd like */
|
|
memset(&hints, 0, sizeof(struct addrinfo));
|
|
hints.ai_family = address_family;
|
|
hints.ai_protocol = IPPROTO_UDP;
|
|
hints.ai_socktype = SOCK_DGRAM;
|
|
|
|
/* fill in ai with the list of hosts resolved by the host name */
|
|
ga_result = getaddrinfo(host, "123", &hints, &ai);
|
|
if(ga_result!=0){
|
|
die(STATE_UNKNOWN, "error getting address for %s: %s\n",
|
|
host, gai_strerror(ga_result));
|
|
}
|
|
|
|
/* count the number of returned hosts, and allocate stuff accordingly */
|
|
for(ai_tmp=ai; ai_tmp!=NULL; ai_tmp=ai_tmp->ai_next){ num_hosts++; }
|
|
req=(ntp_message*)malloc(sizeof(ntp_message)*num_hosts);
|
|
if(req==NULL) die(STATE_UNKNOWN, "can not allocate ntp message array");
|
|
socklist=(int*)malloc(sizeof(int)*num_hosts);
|
|
if(socklist==NULL) die(STATE_UNKNOWN, "can not allocate socket array");
|
|
ufds=(struct pollfd*)malloc(sizeof(struct pollfd)*num_hosts);
|
|
if(ufds==NULL) die(STATE_UNKNOWN, "can not allocate socket array");
|
|
servers=(ntp_server_results*)malloc(sizeof(ntp_server_results)*num_hosts);
|
|
if(servers==NULL) die(STATE_UNKNOWN, "can not allocate server array");
|
|
memset(servers, 0, sizeof(ntp_server_results)*num_hosts);
|
|
DBG(printf("Found %d peers to check\n", num_hosts));
|
|
|
|
/* setup each socket for writing, and the corresponding struct pollfd */
|
|
ai_tmp=ai;
|
|
for(i=0;ai_tmp;i++){
|
|
socklist[i]=socket(ai_tmp->ai_family, SOCK_DGRAM, IPPROTO_UDP);
|
|
if(socklist[i] == -1) {
|
|
perror(NULL);
|
|
die(STATE_UNKNOWN, "can not create new socket");
|
|
}
|
|
if(connect(socklist[i], ai_tmp->ai_addr, ai_tmp->ai_addrlen)){
|
|
die(STATE_UNKNOWN, "can't create socket connection");
|
|
} else {
|
|
ufds[i].fd=socklist[i];
|
|
ufds[i].events=POLLIN;
|
|
ufds[i].revents=0;
|
|
}
|
|
ai_tmp = ai_tmp->ai_next;
|
|
}
|
|
|
|
/* now do AVG_NUM checks to each host. we stop before timeout/2 seconds
|
|
* have passed in order to ensure post-processing and jitter time. */
|
|
now_time=start_ts=time(NULL);
|
|
while(servers_completed<num_hosts && now_time-start_ts <= socket_timeout/2){
|
|
/* loop through each server and find each one which hasn't
|
|
* been touched in the past second or so and is still lacking
|
|
* some responses. for each of these servers, send a new request,
|
|
* and update the "waiting" timestamp with the current time. */
|
|
one_written=0;
|
|
now_time=time(NULL);
|
|
|
|
for(i=0; i<num_hosts; i++){
|
|
if(servers[i].waiting<now_time && servers[i].num_responses<AVG_NUM){
|
|
if(verbose && servers[i].waiting != 0) printf("re-");
|
|
if(verbose) printf("sending request to peer %d\n", i);
|
|
setup_request(&req[i]);
|
|
write(socklist[i], &req[i], sizeof(ntp_message));
|
|
servers[i].waiting=now_time;
|
|
one_written=1;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* quickly poll for any sockets with pending data */
|
|
servers_readable=poll(ufds, num_hosts, 100);
|
|
if(servers_readable==-1){
|
|
perror("polling ntp sockets");
|
|
die(STATE_UNKNOWN, "communication errors");
|
|
}
|
|
|
|
/* read from any sockets with pending data */
|
|
for(i=0; servers_readable && i<num_hosts; i++){
|
|
if(ufds[i].revents&POLLIN && servers[i].num_responses < AVG_NUM){
|
|
if(verbose) {
|
|
printf("response from peer %d: ", i);
|
|
}
|
|
|
|
read(ufds[i].fd, &req[i], sizeof(ntp_message));
|
|
gettimeofday(&recv_time, NULL);
|
|
DBG(print_ntp_message(&req[i]));
|
|
respnum=servers[i].num_responses++;
|
|
servers[i].offset[respnum]=calc_offset(&req[i], &recv_time);
|
|
if(verbose) {
|
|
printf("offset %.10g\n", servers[i].offset[respnum]);
|
|
}
|
|
servers[i].stratum=req[i].stratum;
|
|
servers[i].rtdisp=NTP32asDOUBLE(req[i].rtdisp);
|
|
servers[i].rtdelay=NTP32asDOUBLE(req[i].rtdelay);
|
|
servers[i].waiting=0;
|
|
servers[i].flags=req[i].flags;
|
|
servers_readable--;
|
|
one_read = 1;
|
|
if(servers[i].num_responses==AVG_NUM) servers_completed++;
|
|
}
|
|
}
|
|
/* lather, rinse, repeat. */
|
|
}
|
|
|
|
if (one_read == 0) {
|
|
die(STATE_CRITICAL, "NTP CRITICAL: No response from NTP server\n");
|
|
}
|
|
|
|
/* now, pick the best server from the list */
|
|
best_index=best_offset_server(servers, num_hosts);
|
|
if(best_index < 0){
|
|
*status=STATE_UNKNOWN;
|
|
} else {
|
|
/* finally, calculate the average offset */
|
|
for(i=0; i<servers[best_index].num_responses;i++){
|
|
avg_offset+=servers[best_index].offset[j];
|
|
}
|
|
avg_offset/=servers[best_index].num_responses;
|
|
}
|
|
|
|
/* cleanup */
|
|
/* FIXME: Not closing the socket to avoid re-use of the local port
|
|
* which can cause old NTP packets to be read instead of NTP control
|
|
* pactets in jitter_request(). THERE MUST BE ANOTHER WAY...
|
|
* for(j=0; j<num_hosts; j++){ close(socklist[j]); } */
|
|
free(socklist);
|
|
free(ufds);
|
|
free(servers);
|
|
free(req);
|
|
freeaddrinfo(ai);
|
|
|
|
if(verbose) printf("overall average offset: %.10g\n", avg_offset);
|
|
return avg_offset;
|
|
}
|
|
|
|
void
|
|
setup_control_request(ntp_control_message *p, uint8_t opcode, uint16_t seq){
|
|
memset(p, 0, sizeof(ntp_control_message));
|
|
LI_SET(p->flags, LI_NOWARNING);
|
|
VN_SET(p->flags, VN_RESERVED);
|
|
MODE_SET(p->flags, MODE_CONTROLMSG);
|
|
OP_SET(p->op, opcode);
|
|
p->seq = htons(seq);
|
|
/* Remaining fields are zero for requests */
|
|
}
|
|
|
|
/* XXX handle responses with the error bit set */
|
|
double jitter_request(const char *host, int *status){
|
|
int conn=-1, i, npeers=0, num_candidates=0, syncsource_found=0;
|
|
int run=0, min_peer_sel=PEER_INCLUDED, num_selected=0, num_valid=0;
|
|
int peers_size=0, peer_offset=0;
|
|
ntp_assoc_status_pair *peers=NULL;
|
|
ntp_control_message req;
|
|
const char *getvar = "jitter";
|
|
double rval = 0.0, jitter = -1.0;
|
|
char *startofvalue=NULL, *nptr=NULL;
|
|
void *tmp;
|
|
|
|
/* Long-winded explanation:
|
|
* Getting the jitter requires a number of steps:
|
|
* 1) Send a READSTAT request.
|
|
* 2) Interpret the READSTAT reply
|
|
* a) The data section contains a list of peer identifiers (16 bits)
|
|
* and associated status words (16 bits)
|
|
* b) We want the value of 0x06 in the SEL (peer selection) value,
|
|
* which means "current synchronizatin source". If that's missing,
|
|
* we take anything better than 0x04 (see the rfc for details) but
|
|
* set a minimum of warning.
|
|
* 3) Send a READVAR request for information on each peer identified
|
|
* in 2b greater than the minimum selection value.
|
|
* 4) Extract the jitter value from the data[] (it's ASCII)
|
|
*/
|
|
my_udp_connect(server_address, 123, &conn);
|
|
|
|
/* keep sending requests until the server stops setting the
|
|
* REM_MORE bit, though usually this is only 1 packet. */
|
|
do{
|
|
setup_control_request(&req, OP_READSTAT, 1);
|
|
DBG(printf("sending READSTAT request"));
|
|
write(conn, &req, SIZEOF_NTPCM(req));
|
|
DBG(print_ntp_control_message(&req));
|
|
/* Attempt to read the largest size packet possible */
|
|
req.count=htons(MAX_CM_SIZE);
|
|
DBG(printf("recieving READSTAT response"))
|
|
read(conn, &req, SIZEOF_NTPCM(req));
|
|
DBG(print_ntp_control_message(&req));
|
|
/* Each peer identifier is 4 bytes in the data section, which
|
|
* we represent as a ntp_assoc_status_pair datatype.
|
|
*/
|
|
peers_size+=ntohs(req.count);
|
|
if((tmp=realloc(peers, peers_size)) == NULL)
|
|
free(peers), die(STATE_UNKNOWN, "can not (re)allocate 'peers' buffer\n");
|
|
peers=tmp;
|
|
memcpy((void*)((ptrdiff_t)peers+peer_offset), (void*)req.data, ntohs(req.count));
|
|
npeers=peers_size/sizeof(ntp_assoc_status_pair);
|
|
peer_offset+=ntohs(req.count);
|
|
} while(req.op&REM_MORE);
|
|
|
|
/* first, let's find out if we have a sync source, or if there are
|
|
* at least some candidates. in the case of the latter we'll issue
|
|
* a warning but go ahead with the check on them. */
|
|
for (i = 0; i < npeers; i++){
|
|
if (PEER_SEL(peers[i].status) >= PEER_INCLUDED){
|
|
num_candidates++;
|
|
if(PEER_SEL(peers[i].status) >= PEER_SYNCSOURCE){
|
|
syncsource_found=1;
|
|
min_peer_sel=PEER_SYNCSOURCE;
|
|
}
|
|
}
|
|
}
|
|
if(verbose) printf("%d candiate peers available\n", num_candidates);
|
|
if(verbose && syncsource_found) printf("synchronization source found\n");
|
|
if(! syncsource_found){
|
|
*status = STATE_UNKNOWN;
|
|
if(verbose) printf("warning: no synchronization source found\n");
|
|
}
|
|
|
|
|
|
for (run=0; run<AVG_NUM; run++){
|
|
if(verbose) printf("jitter run %d of %d\n", run+1, AVG_NUM);
|
|
for (i = 0; i < npeers; i++){
|
|
/* Only query this server if it is the current sync source */
|
|
if (PEER_SEL(peers[i].status) >= min_peer_sel){
|
|
num_selected++;
|
|
setup_control_request(&req, OP_READVAR, 2);
|
|
req.assoc = peers[i].assoc;
|
|
/* By spec, putting the variable name "jitter" in the request
|
|
* should cause the server to provide _only_ the jitter value.
|
|
* thus reducing net traffic, guaranteeing us only a single
|
|
* datagram in reply, and making intepretation much simpler
|
|
*/
|
|
/* Older servers doesn't know what jitter is, so if we get an
|
|
* error on the first pass we redo it with "dispersion" */
|
|
strncpy(req.data, getvar, MAX_CM_SIZE-1);
|
|
req.count = htons(strlen(getvar));
|
|
DBG(printf("sending READVAR request...\n"));
|
|
write(conn, &req, SIZEOF_NTPCM(req));
|
|
DBG(print_ntp_control_message(&req));
|
|
|
|
req.count = htons(MAX_CM_SIZE);
|
|
DBG(printf("recieving READVAR response...\n"));
|
|
read(conn, &req, SIZEOF_NTPCM(req));
|
|
DBG(print_ntp_control_message(&req));
|
|
|
|
if(req.op&REM_ERROR && strstr(getvar, "jitter")) {
|
|
if(verbose) printf("The 'jitter' command failed (old ntp server?)\nRestarting with 'dispersion'...\n");
|
|
getvar = "dispersion";
|
|
num_selected--;
|
|
i--;
|
|
continue;
|
|
}
|
|
|
|
/* get to the float value */
|
|
if(verbose) {
|
|
printf("parsing jitter from peer %.2x: ", ntohs(peers[i].assoc));
|
|
}
|
|
startofvalue = strchr(req.data, '=');
|
|
if(startofvalue != NULL) {
|
|
startofvalue++;
|
|
jitter = strtod(startofvalue, &nptr);
|
|
}
|
|
if(startofvalue == NULL || startofvalue==nptr){
|
|
printf("warning: unable to read server jitter response.\n");
|
|
*status = STATE_UNKNOWN;
|
|
} else {
|
|
if(verbose) printf("%g\n", jitter);
|
|
num_valid++;
|
|
rval += jitter;
|
|
}
|
|
}
|
|
}
|
|
if(verbose){
|
|
printf("jitter parsed from %d/%d peers\n", num_valid, num_selected);
|
|
}
|
|
}
|
|
|
|
rval = num_valid ? rval / num_valid : -1.0;
|
|
|
|
close(conn);
|
|
if(peers!=NULL) free(peers);
|
|
/* If we return -1.0, it means no synchronization source was found */
|
|
return rval;
|
|
}
|
|
|
|
int process_arguments(int argc, char **argv){
|
|
int c;
|
|
int option=0;
|
|
static struct option longopts[] = {
|
|
{"version", no_argument, 0, 'V'},
|
|
{"help", no_argument, 0, 'h'},
|
|
{"verbose", no_argument, 0, 'v'},
|
|
{"use-ipv4", no_argument, 0, '4'},
|
|
{"use-ipv6", no_argument, 0, '6'},
|
|
{"warning", required_argument, 0, 'w'},
|
|
{"critical", required_argument, 0, 'c'},
|
|
{"jwarn", required_argument, 0, 'j'},
|
|
{"jcrit", required_argument, 0, 'k'},
|
|
{"timeout", required_argument, 0, 't'},
|
|
{"hostname", required_argument, 0, 'H'},
|
|
{0, 0, 0, 0}
|
|
};
|
|
|
|
|
|
if (argc < 2)
|
|
usage ("\n");
|
|
|
|
while (1) {
|
|
c = getopt_long (argc, argv, "Vhv46w:c:j:k:t:H:", longopts, &option);
|
|
if (c == -1 || c == EOF || c == 1)
|
|
break;
|
|
|
|
switch (c) {
|
|
case 'h':
|
|
print_help();
|
|
exit(STATE_OK);
|
|
break;
|
|
case 'V':
|
|
print_revision(progname, NP_VERSION);
|
|
exit(STATE_OK);
|
|
break;
|
|
case 'v':
|
|
verbose++;
|
|
break;
|
|
case 'w':
|
|
do_offset=1;
|
|
owarn = optarg;
|
|
break;
|
|
case 'c':
|
|
do_offset=1;
|
|
ocrit = optarg;
|
|
break;
|
|
case 'j':
|
|
do_jitter=1;
|
|
jwarn = optarg;
|
|
break;
|
|
case 'k':
|
|
do_jitter=1;
|
|
jcrit = optarg;
|
|
break;
|
|
case 'H':
|
|
if(is_host(optarg) == FALSE)
|
|
usage2(_("Invalid hostname/address"), optarg);
|
|
server_address = strdup(optarg);
|
|
break;
|
|
case 't':
|
|
socket_timeout=atoi(optarg);
|
|
break;
|
|
case '4':
|
|
address_family = AF_INET;
|
|
break;
|
|
case '6':
|
|
#ifdef USE_IPV6
|
|
address_family = AF_INET6;
|
|
#else
|
|
usage4 (_("IPv6 support not available"));
|
|
#endif
|
|
break;
|
|
case '?':
|
|
/* print short usage statement if args not parsable */
|
|
usage5 ();
|
|
break;
|
|
}
|
|
}
|
|
|
|
if(server_address == NULL){
|
|
usage4(_("Hostname was not supplied"));
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
char *perfd_offset (double offset)
|
|
{
|
|
return fperfdata ("offset", offset, "s",
|
|
TRUE, offset_thresholds->warning->end,
|
|
TRUE, offset_thresholds->critical->end,
|
|
FALSE, 0, FALSE, 0);
|
|
}
|
|
|
|
char *perfd_jitter (double jitter)
|
|
{
|
|
return fperfdata ("jitter", jitter, "s",
|
|
do_jitter, jitter_thresholds->warning->end,
|
|
do_jitter, jitter_thresholds->critical->end,
|
|
TRUE, 0, FALSE, 0);
|
|
}
|
|
|
|
int main(int argc, char *argv[]){
|
|
int result, offset_result, jitter_result;
|
|
double offset=0, jitter=0;
|
|
char *result_line, *perfdata_line;
|
|
|
|
setlocale (LC_ALL, "");
|
|
bindtextdomain (PACKAGE, LOCALEDIR);
|
|
textdomain (PACKAGE);
|
|
|
|
result = offset_result = jitter_result = STATE_OK;
|
|
|
|
/* Parse extra opts if any */
|
|
argv=np_extra_opts (&argc, argv, progname);
|
|
|
|
if (process_arguments (argc, argv) == ERROR)
|
|
usage4 (_("Could not parse arguments"));
|
|
|
|
set_thresholds(&offset_thresholds, owarn, ocrit);
|
|
set_thresholds(&jitter_thresholds, jwarn, jcrit);
|
|
|
|
/* initialize alarm signal handling */
|
|
signal (SIGALRM, socket_timeout_alarm_handler);
|
|
|
|
/* set socket timeout */
|
|
alarm (socket_timeout);
|
|
|
|
offset = offset_request(server_address, &offset_result);
|
|
/* check_ntp used to always return CRITICAL if offset_result == STATE_UNKNOWN.
|
|
* Now we'll only do that is the offset thresholds were set */
|
|
if (do_offset && offset_result == STATE_UNKNOWN) {
|
|
result = STATE_CRITICAL;
|
|
} else {
|
|
result = get_status(fabs(offset), offset_thresholds);
|
|
}
|
|
|
|
/* If not told to check the jitter, we don't even send packets.
|
|
* jitter is checked using NTP control packets, which not all
|
|
* servers recognize. Trying to check the jitter on OpenNTPD
|
|
* (for example) will result in an error
|
|
*/
|
|
if(do_jitter){
|
|
jitter=jitter_request(server_address, &jitter_result);
|
|
result = max_state_alt(result, get_status(jitter, jitter_thresholds));
|
|
/* -1 indicates that we couldn't calculate the jitter
|
|
* Only overrides STATE_OK from the offset */
|
|
if(jitter == -1.0 && result == STATE_OK)
|
|
result = STATE_UNKNOWN;
|
|
}
|
|
result = max_state_alt(result, jitter_result);
|
|
|
|
switch (result) {
|
|
case STATE_CRITICAL :
|
|
asprintf(&result_line, _("NTP CRITICAL:"));
|
|
break;
|
|
case STATE_WARNING :
|
|
asprintf(&result_line, _("NTP WARNING:"));
|
|
break;
|
|
case STATE_OK :
|
|
asprintf(&result_line, _("NTP OK:"));
|
|
break;
|
|
default :
|
|
asprintf(&result_line, _("NTP UNKNOWN:"));
|
|
break;
|
|
}
|
|
if(offset_result == STATE_UNKNOWN){
|
|
asprintf(&result_line, "%s %s", result_line, _("Offset unknown"));
|
|
asprintf(&perfdata_line, "");
|
|
} else {
|
|
asprintf(&result_line, "%s %s %.10g secs", result_line, _("Offset"), offset);
|
|
asprintf(&perfdata_line, "%s", perfd_offset(offset));
|
|
}
|
|
if (do_jitter) {
|
|
asprintf(&result_line, "%s, jitter=%f", result_line, jitter);
|
|
asprintf(&perfdata_line, "%s %s", perfdata_line, perfd_jitter(jitter));
|
|
}
|
|
printf("%s|%s\n", result_line, perfdata_line);
|
|
|
|
if(server_address!=NULL) free(server_address);
|
|
return result;
|
|
}
|
|
|
|
|
|
|
|
void print_help(void){
|
|
print_revision(progname, NP_VERSION);
|
|
|
|
printf ("Copyright (c) 2006 Sean Finney\n");
|
|
printf (COPYRIGHT, copyright, email);
|
|
|
|
printf ("%s\n", _("This plugin checks the selected ntp server"));
|
|
|
|
printf ("\n\n");
|
|
|
|
print_usage();
|
|
printf (_(UT_HELP_VRSN));
|
|
printf (_(UT_EXTRA_OPTS));
|
|
printf (_(UT_HOST_PORT), 'p', "123");
|
|
printf (" %s\n", "-w, --warning=THRESHOLD");
|
|
printf (" %s\n", _("Offset to result in warning status (seconds)"));
|
|
printf (" %s\n", "-c, --critical=THRESHOLD");
|
|
printf (" %s\n", _("Offset to result in critical status (seconds)"));
|
|
printf (" %s\n", "-j, --jwarn=THRESHOLD");
|
|
printf (" %s\n", _("Warning threshold for jitter"));
|
|
printf (" %s\n", "-k, --jcrit=THRESHOLD");
|
|
printf (" %s\n", _("Critical threshold for jitter"));
|
|
printf (_(UT_TIMEOUT), DEFAULT_SOCKET_TIMEOUT);
|
|
printf (_(UT_VERBOSE));
|
|
|
|
printf("\n");
|
|
printf("%s\n", _("Notes:"));
|
|
printf(_(UT_THRESHOLDS_NOTES));
|
|
#ifdef NP_EXTRA_OPTS
|
|
printf("\n");
|
|
printf(_(UT_EXTRA_OPTS_NOTES));
|
|
#endif
|
|
|
|
printf("\n");
|
|
printf("%s\n", _("Examples:"));
|
|
printf(" %s\n", _("Normal offset check:"));
|
|
printf(" %s\n", ("./check_ntp -H ntpserv -w 0.5 -c 1"));
|
|
printf("\n");
|
|
printf(" %s\n", _("Check jitter too, avoiding critical notifications if jitter isn't available"));
|
|
printf(" %s\n", _("(See Notes above for more details on thresholds formats):"));
|
|
printf(" %s\n", ("./check_ntp -H ntpserv -w 0.5 -c 1 -j -1:100 -k -1:200"));
|
|
|
|
printf (_(UT_SUPPORT));
|
|
|
|
printf ("%s\n", _("WARNING: check_ntp is deprecated. Please use check_ntp_peer or"));
|
|
printf ("%s\n\n", _("check_ntp_time istead."));
|
|
}
|
|
|
|
void
|
|
print_usage(void)
|
|
{
|
|
printf ("%s\n", _("WARNING: check_ntp is deprecated. Please use check_ntp_peer or"));
|
|
printf ("%s\n\n", _("check_ntp_time istead."));
|
|
printf (_("Usage:"));
|
|
printf(" %s -H <host> [-w <warn>] [-c <crit>] [-j <warn>] [-k <crit>] [-v verbose]\n", progname);
|
|
}
|